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Introduction
Traditional phytoplankton monitoring, based on 
phytoplankton biomass and/or chlorophyll-a, can-
not reflect species or functional trait level properties. 
The interest in finding a substitute for the taxonomic 
approach to understand the phytoplankton dynamics 
in freshwater ecosystems contributed to the creation 
of the three most relevant ecological classification 
concepts: the functional group (FG) classification in-
troduced by Reynolds et al. (2002) and updated by 
Padisák et al. (2009), the morpho-functional group 
(MFG) classification by Salmaso, Padisák (2007), 
and the morphology-based functional group (MBFG) 
classification (Kruk et al. 2010, Kruk, Segura 2012). 

In a functional group, ecologically, morphologically 
or morpho-functionally similar species are assem-
bled together and are expected to represent a more or 
less well-defined functional trait. All three systems 
in their original descriptions were developed for 
lakes, whereas the FG approach has been applied in 
different lakes worldwide (see Salmaso et al. 2012 
for review). In our previous studies, we tested the 
applicability of all three approaches in evaluating 
changes of phytoplankton in the floodplain waters 
of the Kopački Rit (Mihaljević et al. 2009, 2010, 
2013, 2014, Mihaljević, Stević 2011, Stević et al. 
2013). Beshkova et al. (2010) used phytoplankton 
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taxonomic and functional groups for evaluation of 
phytoplankton in Bulgarian floodplain habitats (lake 
and wetlands). However, the proposed concepts 
are still far from their application in phytoplankton 
monitoring in river ecosystems. As was summarised 
by Abonyi et al. (2012), the longitudinal succes-
sion of phytoplankton in large rivers is redrawn by 
inflowing tributaries, by natural dead zones or by 
human modifications on the river bed (dikes, reser-
voirs, flow modifications, stone disposal). Based on 
residence time, nutrient availability, and light con-
ditions, maximum phytoplankton production occurs 
at middle sections of rivers where phytoplankton is 
mainly dominated by centric diatoms (Abonyi et al. 
2012, Borics et al. 2007, Schmidt 1994).

According to the FG classification, diatoms 
are distributed into seven groups defined by their 
morphological, physiological, and ecological adap-
tations to different types of habitats. The MFG clas-
sification separates diatoms into five groups (large or 
small centrics or pennates and colony-forming large 
pennates based on easily recognisable traits includ-
ing shape, size, and cell aggregation. The least sen-
sitive MBFG scheme assigns taxa to groups based 
on purely morphological features, sorting diatoms 
as non-flagellated organisms with siliceous exoskel-
etons to only one group (G6). 

In this paper, we compared the application of 
all three concepts in the phytoplankton monitoring of 
the Danube River, focusing on diatoms as the most 
relevant component of potamoplankton worldwide.

Material and Methods
The Danube River in its middle section (rkm 1410-
1383) shows lowland river characteristics with a 
mean annual discharge of 2085 m3 s−1 and mean 
annual water level of 2.63 m (data source: daily re-
cordings at the gauge station at river 1401.4 km). 
The average monthly flow of the Danube River 
is the highest in the first half of the year (in mid-
spring) followed by a decrease from June through 
October and a subsequent increase thereafter. The 
research was conducted in 2006, 2008, and 2009. 
The sampling point was located on the main river 
course (rkm 1388). In situ measurements of water 
temperature (WT), pH, conductivity and dissolved 
oxygen (DO) were done using the portable instru-
ment WTW Multi 340i. Concentration of nutrients 
was analysed according to APHA (1992). To as-

sess the qualitative and quantitative composition 
of phytoplankton, depth-integrated samples (10 L 
volume) were collected from the entire water col-
umn. Phytoplankton species were identified by light 
microscopic observations, using standard literature 
for species determination. For the diatom analysis, 
samples were subsequently treated with H2O2 and 
HCl. Quantitative assessment of species was con-
ducted according to Utermöhl (1958). The count-
ing unit was the individual (single cell, coenobium, 
filament or colony). For colonial organisms with 
mucilage, volume calculations were made for entire 
colonies including mucilage. The abundance of each 
species is expressed through the number of individu-
als per litre. For biovolume estimation, individuals 
were measured and their volumes calculated accord-
ing to geometrical solids, and converted to biomass. 
Biomasses were sorted into FGs (Reynolds et al. 
2002, Padisák et al. 2009), MFGs (Salmaso, Padisák 
2007, Tolotti et al. 2012) and MBFGs (Kruk et al. 
2010, Kruk, Segura 2012). Detrended correspond-
ence analysis suggested the use of the linear method 
and redundancy analysis (RDA) was performed with 
the CANOCO for Windows version 4.5 (Ter Braak, 
Šmilauer 2002). The RDA analysis was based on 
field data, on the biomass of the phytoplankton 
taxa, biomass of functional groups and on the envi-
ronmental variables. Non-metric multidimensional 
scaling (nMDS) analysis was performed on the same 
biomass data using the statistical program PRIMER 
version 5.0 (Clarke, Warwick 2001).

Results and Discussion
The hydrological regime of the Danube River varied 
significantly on a yearly scale with the water level 
ranging from 0.2–8.1 m in 2006, 0.4–4.7 m in 2008 
and 0.4-7.3 m in 2009 (Fig. 1). Notable patterns in 
water properties during the whole research period 
included: temperature range from 4.2 to 24.7°C; DO 
permanently above 7 mg.l-1; variations in total phos-
phorus (TP) in the range of 87-402 μg.l-1 (mean value 
193.6 μg.l-1), and variations in total nitrogen (TN) in 
the range of 219.2-3581.3 μg.l-1 (mean value 2013.6 
μg.l-1). Temporal changes of phytoplankton biomass 
(4.96-9.19 mg.l-1 in 2006, 0.31-23.49 mg.l-1 in 2008 
and 0.30-10.02 mg.l-1 in 2009) indicated that higher 
biomass coincides with low water level in the river 
(Fig. 1). At these conditions the suspended matter 
content substantially decreases, the water column 



Application of Morpho-Functional Classifications in the Evaluation of Phytoplankton Changes...

155

can become transparent almost to the bottom and the 
phytoplankton density can double in a matter of days 
(Kiss et al. 1996). 

Phytoplankton species diversity during the 
three years of investigation accounted for a total of 
183 taxa, among which 43 taxa achieved biomass 
higher than 5% of total biomass and can be consid-

ered as dominants. The taxa were sorted into mor-
pho-functional groups, and a total of 16 MFGs (1b, 
1c, 2a, 2d, 3a, 3b, 5a, 5d, 6a, 6b, 6c, 7a, 7b, 9c, 10a, 
11a), 15 FGs (B, C, D, G, H1, J, L0, P, S1, T, TB, 
W1, X1, X3, Y) and 7 MBFGs (G1-G7) were found 
to be dominant. Redundancy analysis revealed that 
a higher percentage of variance is explained by us-

Fig. 1. The annual changes in: (a) the Danube River water level; (b) water temperature (WT) and dissolved oxygen (DO); (c) total 
nitrogen (TN) and total phosphorus (TP); (d) biomass of phytoplankton functional groups (FGs); (e) biomass of phytoplankton 
morpho-functional groups (MFGs); and (f) biomass of phytoplankton morphology-based functional groups (MBFGs) in the Danube 
River. See Legend of Fig. 2. for group representatives
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ing ecological classifications than by the taxonomic 
approach. When using species, the first two axes of 
RDA accounted the lowest value of the variance in 
the species-environment relationships (57.8%, axis 
1: 34.3% and axis 2: 23.5%) (Fig. 2). 

The first axis was mainly correlated with water 
temperature, DO, nitrates and TN, and the second 
axis was mainly defined by transparency and pH 

(Fig. 2). On the contrary, when species were grouped 
into MBFGs, the MBFG-environment relations of 
RDA axis 1 (75.5%) and RDA axis 2 (12.0%) ex-
plained the highest percentage of variance (87.5%). 
The first axis was mainly correlated with transpar-
ency, DO and pH, and the second axis was mainly 
defined by water temperature, nitrates, TN and TP. 
The two main axes of RDA explained the similar cu-
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mulative percentages of variance when species were 
grouped into FGs (72.6%, axis 1: 52.4% and axis 2: 
20.2%) and MFGs (76.3%, axis 1: 61.3% and axis 
2: 15.0%). The first axis was mainly correlated with 
DO and pH, and the second axis was mainly defined 
by transparency, water temperature, nitrates, TN and 
TP. Also, according to the nMDS analysis (data not 
shown) there was the lower stress using the ecologi-
cal classifications (from 0.12 to 0.17) while the stress 
values in nMDS analysis based on species was at the 
highest permissible limit (0.20).

Among the dominant phytoplankton species, 
more than half are diatoms (25 taxa) and they ac-
counted for 23.4-96.8% of the total phytoplankton 
biomass. According to MBFGs concept all diatom 
taxa are sorted to G6 group (Fig. 1) and applying this 
concept only the changes of total diatom abundance 
can be followed. 

According to MFGs concept, all of the five 
MFGs comprising diatoms were found (Fig. 1): large 
centrics (6a), large unicellular pennates (6b), colony-
forming large pennates (6c), small centrics (7a) and 
small pennates (7b). Small centrics accounted for 
the largest portion of total phytoplankton biomass 
during the whole period of investigation, similarly 
as it was found during the intensive surveys of the 
Hungarian Danube stretch (Schmidt 1994 and cites 
therein). However, significant differences in the 
pattern of key species within this group were es-
tablished. The massive blooms of Stephanodiscus 
species, as observed during the vernal period, repre-
sent the well-pronounced phase of the Danube River 
phytoplankton development (Verasztó et al. 2010). 
Stephanodiscus hantzschii together with Cyclotella 
meneghiniana and C. comta were the dominant 
species during conditions of high water discharge. 
Another increase in biomass of small centrics was 
established in the summer-autumn period with the 
dominance of Skeletonema potamos, accompanied 

by S. hantzschii, C. meneghiniana and Actinocyclus 
normanii. According to Kiss et al. (1994), higher 
water temperatures and lower water discharge fa-
vour the blooms of S. potamos. During the whole 
period of investigation, large centrics, mostly taxa of 
the genera Aulacoseira and Melosira, together with 
large unicellular pennatess, merely Ulnaria spp., 
comprised a large portion of the total biomass, be-
ing related to the strong mixing events during high-
discharge periods.

Among seven codons in which diatoms were 
sorted according to the FGs approach, we found 
B, C, D, P and TB as the dominant codons in the 
Danube River (Fig. 1). Most of these groups are 
characteristic for turbid mixed environments includ-
ing rivers (Padisák et al. 2009). Functional group D 
(Stephanodiscus spp., Ulnaria spp. and S.  potamos) 
was the most represented throughout the investigat-
ed period, oftentimes reaching more than 70% of the 
total phytoplankton biomass. Small celled and fast 
growing species which belong to this group were tol-
erant to the water mixing and low light levels which 
represent its advantages in highly turbulent condi-
tions. Generally, centric diatoms from the codons C 
and D can be considered as typical and permanent 
potamoplankton species in the Danube River, while 
during high-discharge period tychoplanktonic dia-
toms (TB) can become dominant (Stanković et al. 
2012).

It is obvious that a fine partition of phytoplank-
ton taxa within the morpho-functional classification 
enables a more satisfying description of the phyto-
plankton changes in a river ecosystem. However, 
the need to integrate the phytoplankton species ac-
cording to their ability to cope with specific river 
environments still exists and further investigations, 
focused on the changes of phytoplankton along the 
Danube River, would undoubtedly improve the phy-
toplankton classification schemes. 
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